

Report update

Developing a guidance document on Fish Health Management to the attention of fish farmers in the light of climate change

Prepared & presented by: Dr Alain Le Breton & Sara Picon Camacho, PhD - Vet'Eau

1st June 2023, Zoom online meeting

Project: Developing a guidance document on Fish Health Management to the attention of fish farmers in the light of climate change

Objectives

Focus on the

- $\boldsymbol{\Theta}$ challenges posed to the professionals by climate change
- evolution EU policy framework in the context of aquaculture and climate change in recent years

Expected outputs

Development of code of good practice on the management of aquatic diseases

() Chapter 1 - Revision of the legislation

Chapter 2 - Current prevention measures in place & Potential new ones

Chapter 3 - Cases studies

Chapter 4 - Guidelines responses to new challenges and commission policies, including public expectations, public health issues and zootechnical challenges i.e. PMP-AB / FAO initiative, AMR & One Health approach

Chapter 5 - Develop a FAQ with the producer's questions

Project: Developing a guidance document on Fish Health Management to the attention of fish farmers in the light of climate change

Chapter 2 - Current prevention measures in place & Potential new ones

- 2.1. Revision of current prevention measures
 - 2.1.1. Biosecurity restricted currently at farm
 - 2.1.2. Vaccination
 - 2.1.3. Functional feeds
 - 2.1.4. Broodstock selective breeding

2.2. Potential new measures

- 2.2.1. Changes on production systems
 - 2.2.1.1. open coastal cages
 - 2.2.1.2. Increase the length of the duration of production cycle in RAS systems : controlled environment parameters / reduction of the production at open environment
- 2.2.2. Diversification into less currently produced finfish species (e.g. meagre / grey mullet)
- 2.2.3. Integrate Multi-trophic Aquaculture (IMTA)
- 2.2.4. Aquaponic
- 2.2.5. Polyculture (e.g. carp aquaculture)
- 2.2.6. Broodstock selective breeding: Nodavirus seabass (future perspectives)

2.2.1. Changes on production systems

Climate change challenges

- Sea environment (coastal areas)
 - Stronger weather conditions (sea storms)
 - Stronger currents
 - Increase risk pollution \rightarrow organic pollution / eutrophication /algae blooms
- Freshwater environment (continental waters)
 - Increase of water temperatures
 - Reduction on water availability

veteau

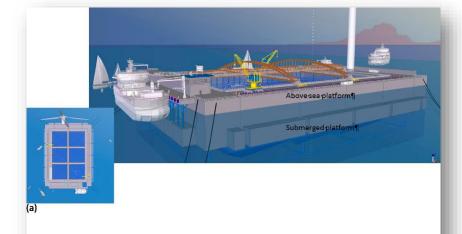
2.2.1. Changes on production systems

Open coastal systems

Benefits & climate change adapatation

Higher water quality \rightarrow higher oxygen levels, higher water exchange, dilution of waste

Use deeper/bigger pens \rightarrow limitless expansion , better growth


Possbility offshore windmills fields \rightarrow protected zone, green energy, anchorage, diversification (IMTA)

Health management

- \checkmark stressful environment \rightarrow stable water quality parameters
- \checkmark risk of transmission of pathogens between wild and cultured fish

Limitations

Mediterranean aquaculture : lack of suitable technology capable of whithstanding strong storms

Picture from Billing et al., 2022

Picture from https://www.dnv.com/news/

veteau

2.2.1. Changes on production systems

Increase the lenght of production in RAS

Benefits & climate change adaptation

Better control of water quality parameters

Less water dependance

© Picture from Innovasea.com

Health management

Close system \rightarrow less risk of pathogens entering the system / transmission of pathogens into the wild

 \uparrow Production of pre-grown juveniles of larger size \rightarrow reduce time at open sea/ reduce susceptibility to diseases / mortality post sea transfer

Limitations

• RAS \rightarrow high energy costs $\rightarrow \uparrow$ CO2 / GHG

 \checkmark energy costs \rightarrow renewable energy

• Close system \rightarrow if pathogen enters the system \rightarrow rapid spread and multiplication

Good understanding of potential pathogens / effective BAP / Good RAS design (allows treatments / isolation of the different units)

2.2.2. Diversification into less produced finfish species

Meagre (Argyrosomus regius)

Benefits & climate change adaptation

Resistant to high temperature and have a large thermal window tolerance (20-26 $^{\circ}$ C)

Fast-growing species / Low FCR / easy larval rearing

Limitations

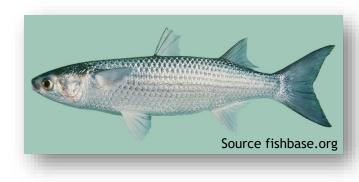
Occurrence of systemic granulomas / carataracts → nutritional deficiency ? → no specific food available

Carnivorous fish \rightarrow high production costs (feed)

Limited genetic variation of the available broodstock

2.2.2. Diversification into less produced finfish species

Grey mullet (*Mugil cephalus*)


Benefits & climate change adaptation

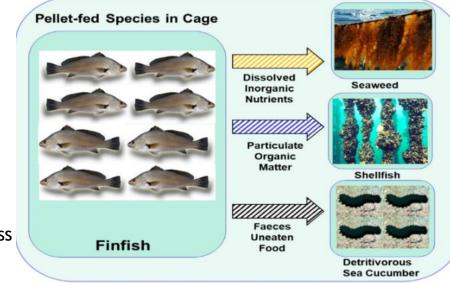
- High plasticity: euryhaline (FW/SW) & warm water species
- Herbivore / detrivorous species \rightarrow reduction on production costs (fish feed) / earth ponds improvement sediment quality / avoid oxygen depletion
- Production: high quality protein(whole fish /fillets) / high valued product (bottarga, female roe)

Limitations development of monoculture

- Control reproductive cycle / improving egg quality (bottarga)
- Increase survival of juveniles
- Development of fishmeal-free grow-out feed adapted to the species

vet^eeau

2.2.3. Integrated Multi-Trophic Aquaculture (IMTA)


Benefits & climate change adaptation

IMTA sytems not affected by rainfall variation / drought / sea level rise

Increase oxygen levels \rightarrow Seaweed (Photosynthesis)

IMTA species \rightarrow euryhaline \rightarrow tolerate wide range of salinity

Elimination of nutrients / suspended particles \rightarrow filtration \rightarrow clear water/ less euthrophication / less algal blooms

IMTA schematic illustration from Kim et al., 2022

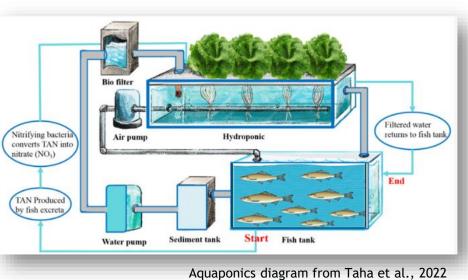
Fish health management

Shellfish around the fish cages \rightarrow biosecurity protection / particles filtration \rightarrow uptake pathogens / better water quality / less stress / disease susceptibility

Microalgae in IMTA system interfere pathogenitcity of bacteria Vibrio harveyi / Aeromonas spp.

2.2.4. Aquaponics

Benefits & climate change adaptation


Upcoming restrictions on FW availability \rightarrow aquaponic sustainable alternative \rightarrow optimisation of resources

Control water quality parameters

Limitations

Crucial good design \rightarrow management of diseases \rightarrow treatments \rightarrow RAS (fish) / hydroponic (Plants)

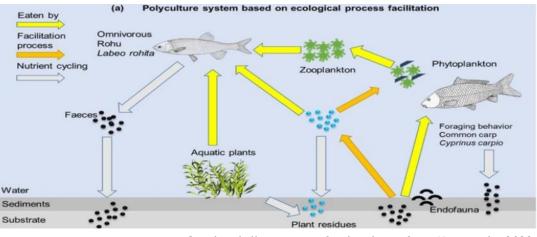
Increase profitability Aquaponics systems in Europe \rightarrow change to warm water fish species (tilapia / mullets) / increase plant production but also energy costs

2.2.5. Polyculture

Benefits & climate change adaptation

Allow optimisation of resources (water) while maximizing the production (Rohu/common carp/aquatic plants, well established in Asia)

In Europe \rightarrow Experimental co-culture of Gilthead seabream / grey mullet


Increase overall biomass production

Reduced FCR

Reduced the amount of sludge

Fish health management

Polyculture can reduce the treatments to control diseases \rightarrow positive abiotic interactions (e.g. ballan wrasse \rightarrow control sea lice in Atlantic salmon)

Graphical illustration of polyculture from Kim et al., 2022

2.2.6. Broodstock selective breeding

Four different populations of European seabass have been identified:

Northern-East Mediterranean(NEM)

Southern-East Mediterranean (SEM)

Western Mediterranean (VEM)

Nothern Atlantic (NAT)

Each population show a different sentitivity to high temperatures and resistance to Nodavirus

Demonstrated that there is genetic variance in the reaction to temperature \rightarrow Selecting breeding towards increased heat tolerance

Thank you for your attention!

